
Standards in the UHD Streaming
Backend

HbbTV Webinar 26th of April

Dr.ir. Rufael Mekuria Lead Research Engineer Unified Streaming

Outline of Presentation

Introduction

Backend according to DASH-IF

DASH-IF Live Media Ingest Protocol

Content Protection Interchange Format (CPIX)

Supporting custom DASH features on-the-fly

Upcoming standards in this area

Short Introduction
Unified Streaming is a company that makes software, mainly
packager, origin, content stitching, software that enables you to
create solutions for streaming VoD, Live NPVR etc.

Unified Streaming products are used around the globe and
extensively documented docs.unified-streaming.com

I joined Unified Streaming in 2016, as research and standards
engineer working on H2020 5G Superfluidity and standards projects
(DASH-IF, MPEG, DVB, CTA). I am currently editor and lead of DVB
streaming group (TM-STREAM).

Before I did my PhD at CWI and started a project in MPEG on
volumetric video coding and point cloud coding. This project was
joined by all major mobile device manufecturers (Apple, Samsung,
Huawei and Sony) at the end of my PhD.

Generic Backend [DASH-IF]

Encoder Origin CDNPackager

DRM Client

DVB-I
service

Content Preparation

Content Delivery

Service Lists
(DVB)

Live Media Ingest Protocol 1
DASH-IF

DASH-IF
CPIX

Key Exchange

DVB-I

DVB
DASH

DVB
DASH

MPD
proxy

Live Media Ingest Protocol 2
DASH-IF

Custom
Features

The heavy Job: The ABR Encoder

HEVC and AVC Video profiles for DVB DASH
https://www.etsi.org/deliver/etsi_ts/101100_101199/101154/
02.04.01_60/ts_101154v020401p.pdf

Video Codec (AVC and HEVC, main and high profile)
Colorimetry usage (BT.709, BT.2020 BT.2100)
HDR support HLG10, PQ10, dynamic metadata
Audio codecs (MPEG/Dolby/DTS)

How to best output content from the encoder ? ? ?

https://www.etsi.org/deliver/etsi_ts/101100_101199/101154/02.04.01_60/ts_101154v020401p.pdf

Encoder output

What format does the ABR encoder need to output ?

CMAF specification (2018):
https://www.iso.org/standard/71975.html

Fragmented MP4 based on ISOBMFF
Guidelines for colometry and aspect ratio for seamless switching
Optional Track Role signaling and Accessibility signaling in kind box
CMAF Tracks can carry video, audio, subtitles, timed metadata
Most of the signalling (not all) in DASH/HLS also exists or can be derived from CMAF
Active work is done on creating profiles for codecs and technologies, therefore,
CMAF is future proof as bindings for new technologies are actively developed

https://www.iso.org/standard/71975.html

CMAF Track Example

styp prft emsgmoof mdatmoov

tfdt

tfhd

Continuously increasing
sequence number and
BaseMediaDecodeTime

optional boxes
Defined in CMAF/DASH

moof mdat

CMAF header CMAF fragment CMAF fragment with optional boxes

CMAF Track

ftyp sidx

Live Media Ingest

Encoder Origin CDNPackager

Content Encoding Content Preparation

CMAF
uplink

DASH
uplink

Delivery

HTTP POST for pushing fragments downstream
- DASH-IF technical specification:
- https://dashif-documents.azurewebsites.net/Ingest/master/DASH-IF-

Ingest.html
- Uses CMAF and optional DASH manifest describing grouping and naming
- Generate final delivery manifest downstream

https://dashif-documents.azurewebsites.net/Ingest/master/DASH-IF-Ingest.html

Benefits of live media ingest

Use CMAF and HTTP POST for pushing fragments downstream:

- Easy to work with new codecs and profiles
- Easy to enable redundant and fault tolerant workflows, including setups with

multiple encoders/packagers and origins (more later).
- Distributed encoding: e.g higher bit-rate ladder can be encoded on different

machines
- Retransmission of segments in case of errors and packet loss errors are avoided
- All media, timed text, subs and metadata are supported
- Implementation available in FFMpeg, encoder vendors
- Offload encoder, avoid single point of failure
- FFMpeg demo with multiple encoders: https://github.com/unifiedstreaming/live-

demo-cmaf

Content Protection Interchange

For UHD Multi-key is often desired, to acquire and exchange complex key
information between network distributed entities CPIX is recommended to be
used.

Content Protection Interchange Format (CPIX) can be used to exchange
Key information between DRM provider, packager and encoder

CPIX defines an XML schema for carrying content key and encryption
information, the protocol/API for information exchange is not standardized

DASH-IF and pending ETSI standard:
https://dashif-documents.azurewebsites.net/CPIX/master/Cpix.html

https://dashif-documents.azurewebsites.net/CPIX/master/Cpix.html

Information in a CPIX Document

• ContentKey
A CPIX doc Must have a Key ID (KID) used to identify the content and associate it with a (secret) Content

Encryption Key. It May have a Content Encryption Key (CEK), which is used to encrypt the content.
• DRMSystem, a cpix document, must have a System ID which represents a specific DRM system such as Microsoft

PlayReady. DASH-IF defines and documents different DRM system IDs.
• Must have a Key ID which must refer to an existing Content Key's KID.
• Optionally, it has a Protection System Specific Header (PSSH) element. Depending on the DRM system, contains

protection information such as such as licenses, rights, and license acquisition information.

• Optionally has ContentProtectionData used for signaling DRM in the MPEG-DASH playout manifest.
• Optionally has HLSSignalingData used for signaling DRM in the Apple HLS Manifest.
• Optionally has SmoothStreamingProtectionHeaderData used for signaling DRM in the Microsoft Smooth

Streaming playout manifest.
• Optionally has HDSSignalingData used for signaling DRM in the HTTP Dynamic Streaming playout manifest.

Minimal CPIX Example

CPIX Example with multiple keys
<?xml version='1.0' encoding='UTF-8'?>

<CPIX xmlns:pskc="urn:ietf:params:xml:ns:keyprov:pskc" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="urn:dashif:org:cpix" xsi:schemaLocation="urn:dashif:org:cpix
cpix.xsd"> <ContentKeyList>

<ContentKey kid="e82f184c-3aaa-57b4-ace8-606b5e3febad">

<Data> <pskc:Secret> <pskc:PlainValue>...</pskc:PlainValue></pskc:Secret> </Data>

</ContentKey>

<ContentKey kid="087bcfc6-f7a5-5716-b840-6aa6eba3369e">

<Data><pskc:Secret><pskc:PlainValue>...</pskc:PlainValue> </pskc:Secret> </Data>

</ContentKey>

<ContentKey kid="0d6b4023-8da1-5e75-af68-75c514c59b63"><Data> <pskc:Secret>

<pskc:PlainValue>...</pskc:PlainValue></pskc:Secret> </Data>

</ContentKey>

</ContentKeyList>

<DRMSystemList>

<!– ommited -->

</DRMSystemList>

<ContentKeyUsageRuleList>

<ContentKeyUsageRule kid="e82f184c-3aaa-57b4-ace8-606b5e3febad">

<VideoFilter maxPixels="589824"/>

</ContentKeyUsageRule>

<ContentKeyUsageRule kid="087bcfc6-f7a5-5716-b840-6aa6eba3369e">

<VideoFilter minPixels="589825" maxPixels="2073600"/>

</ContentKeyUsageRule>

<ContentKeyUsageRule kid="0d6b4023-8da1-5e75-af68-75c514c59b63">

<AudioFilter/>

</ContentKeyUsageRule>

</ContentKeyUsageRuleList>

</CPIX>

Python CPIX tool
pycpix - a Python library for working with CPIX 2.2 documents: https://github.com/unifiedstreaming/pycpix
cpix-gen - a CPIX generator tool - a fully installed, dockerised version of pycpix. https://github.com/unifiedstreaming/cpix-gen/

Example
To create a simple CPIX document with a single key:

• import cpix

• full_cpix = cpix.CPIX(
• content_keys=cpix.ContentKeyList(
• cpix.ContentKey(
• kid="0DC3EC4F-7683-548B-81E7-3C64E582E136",
• cek="WADwG2qCqkq5TVml+U5PXw=="
•)
•),
• drm_systems=cpix.DRMSystemList(
• cpix.DRMSystem(
• kid="0DC3EC4F-7683-548B-81E7-3C64E582E136",
• system_id="EDEF8BA9-79D6-4ACE-A3C8-27DCD51D21ED",
• pssh=("AAAAxnBzc2gBAAAA7e+LqXnWSs6jyCfc1R0h7QAAAAINw+xPdoNUi4HnPGT"
• "lguE2FEe37S9mVyu9EwbOfPNhDQAAAIISEBRHt+0vZlcrvRMGznzzYQ0SEF"
• "rGoR6qL17Vv2aMQByBNMoSEG7hNRbI51h7rp9+zT6Zom4SEPnsEqYaJl1Hj"
• "4MzTjp40scSEA3D7E92g1SLgec8ZOWC4TYaDXdpZGV2aW5lX3Rlc3QiEXVu"
• "aWZpZWQtc3RyZWFtaW5nSOPclZsG")
•)
•)
•)

Custom Features Using MPD Proxy
• DVB-DASH and other profiles of DASH use specific features/properties

• Using an MPD Proxy or MPD manipulator can be attractive to customize
manifest/playlist
– Adding a descriptor

– Adding Service description element

– Re-order the adaptation sets in the mpd

– Introducing adaptation set switching property to switch between adaptationsets

– Adding or removing labels

– Remove sidecar or webvtt subtitles adaptation sets

– Change track roles

–

– https://docs.unified-streaming.com/documentation/manifest-edit/index.html

Upcoming standards
• DVB-DASH TA signalling (DVB-TA part 3)

– Signalling of SCTE-35 based ad breaks in DVB-DASH

– Reporting and content/asset identification for ads

– For client and server side ad insertion

– Joint work with SCTE DVS WG5 and WG7

• MPEG encoder Synchronization
– Proposal for encoder synchronization using DASH-IF live media ingest and epoch counting

– Work in progress

– Presentation at MHV 2022 https://dl.acm.org/doi/abs/10.1145/3510450.3517313

– Demo stream on our webpage: demo.unified-streaming.com/k8s/live

https://dl.acm.org/doi/abs/10.1145/3510450.3517313

Conclusion
Standardized interfaces can help to implement UHD live streaming at
scale
- DASH-IF Live Media ingest

- Future proof and support for new codecs
- Distributed setups and encoder synchronization
- Offload the encoder

- DASH-IF CPIX
- Distribute Keys in interoperable manner
- Tools and examples available
- Supported by USP, AWS and most DRM vendors

- MPD Proxy
- Many DASH profiles (DVB, DASH-IF,SCTE) use custom options
- Manipulate the manifest downstream with an MPD proxy

