RED BADGER

WebAssembly

Stuart Harris, Red Badger

HbbTV

March 2025

Hi, I'm Stu .

=> Software engineer

=> Founder and Chief Scientist at Red Badger

-> @stuartharris

About us

Red Badger is the 1 5

Digital Product transformation

Consultancy Years Old, founded 2010
We help modern enterprises continuously evolve their

products and services. We craft digital products 1

customers love, build next generation platforms and C.

embed new digital capabilities People

90%

Permanent, London team

O

TESCO FINANCIALTIMES sy DBEE D asos W

y o 7 ¢ 7 4
DOW JONES

HSBC <» LLOYDS BANK AJLT E Fidelity OLME TANDEM

M : CAMDEN @@ BRITISH - AV PRIDE IN
whopin rorTnuMemason SARREN Q@ ECUNCL CHASE O !" LONDON
Y {f:f;f‘;““ !
:%%N ATKINS "cartrawler Q@’ #: MHRA Mew-s K

EQUIFAX Nando's * Edelman & Santander Ventures | @ BARCLAYS

~

What is WebAssemb|y? Well, it’s not (only) Web and it’s not
Assembly!

It is a bytecode (like Java
bytecode or the Common
Intermediate Language of .Net).

More formally — it’s a binary
instruction format for a
stack-based virtual machine.

How is it different?

Simple

Possibly the simplest virtual machine we have. Only has 4 types
(i32/64 and f32/64). No baked-in OOP concepts (like JVM). No
coupling to APIs, the DOM, or screen-space (like Java applets).

Secure

Designed to run untrusted code in the browser. Deny-by-default
sandbox ensures code cannot, itself, run any side effects.

Speedy
Designed to run code at native speeds. Lightweight. No runtime or

garbage collection (although there is a spec for that). Streaming
compilation.

I\

W3C: 4th
language of the
web alongside
HTML, JS, CSS

A brief History

20M
2013
2019

++

C/C .to JS e o Now 2017 20267
with i = 2014-2015 all major browsers

emscripten strict subset

of JS q WebAssembly
WebAssembly 2.0 (draft)
1.0
WebAssembly 2022
Interface Types WebAssembly
Ny - (WIT) Component
. ? 2024 Model
‘P ——
[[2 ' B b A
t ~* — " v » WebAssembly
TIME
System Interface
(WASI)

Demo

What is the simplest WebAssembly module
we could create?

WebAssembly Text

@® O @ hbbtv -
> ‘ add.wat ‘ + o
add.wat Q%I

il (module

2 (func (export "add") (param $x i32) (param $y i32) (result i32)

3 local.get $x

4 local.get $y

5 i32.add))

6

| &= & | v 6:1 WebAssembly Text Format Z» B (8 % o

XX 23 It/hbbtv

@ stuartharris _ /tmp/hbbtv ©16:45
-> wasmer add.wat -i add 22 44

66

& stuartharris _ /tmp/hbbtv ®©16:46

9

WebAssembly Modules

@ @ @ @

JS

clang --target=
wasm32-wasi

clang --target=
wasm32-wasi

cargo component

build

runtimelabs

tinygo build -o
main.wasm main.go

componentize-py

jco componentize

WA

Wasm Module

Wasm Runtime

Server/Edge

e@o

Browser

xg6

X64

aarch64

armé4

10

Demo

Let’s use a real programming language to create a
WebAssembly module on MacOS.

... and then let’s run that same binary on a Linux
machine!

1

WebAssembly Module in Rust «

[2CN) 3 /t/h/hello-world
& stuartharris _ /tmp/hbbtv ®©16:51
> cargo new hello-world
Creating binary (application) “hello-world’ package
note: see more ‘Cargo.toml’ keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html

& stuartharris /tmp/hbbtv ®16:51
2> cd hello-world/

©16:52

& stuartharris ../hello-world ¥ master ? ® v1.85.0

- bat ./src/main.rs

File: ./src/main.rs

il fn main() {
2 println! ("Hello, world!");
3 +

& stuartharris _ ../hello-world = ¥ master ? ® v1.85.0 ©16:52
- cargo build --release --target wasm32-wasipl
Compiling hello-world v@.1.0 (/private/tmp/hbbtv/hello-world)
Finished ‘release’ profile [optimized] target(s) in 1.23s

& stuartharris ./hello-world ¥ master ? ® v1.85.0 ®16:52
2> eza -la ./target/wasm32-wasipl/release/hello-world.wasm

.rwxr-xr-x@ 65k stuartharris 10 Mar 16:52 ./target/wasm32-wasipl/release/hello-world.wasm

& stuartharris _ ../hello-world = ¥ master ? @ v1.85.0 ©16:52
> wasmtime target/wasm32-wasipl/release/hello-world.wasm
Hello, world!

@ stuartharris _ ../hello-world = ¥ master ? ® v1.85.0 ©16:53

12

WebAssembly Components .

WebAssembly Interface Types

WASI preview 1 - modules

WASI preview 2 - components

Polyglot

Canonical ABI, with static and dynamic linking

Capability based security

Bindings generation — e.g. wasm-bindgen

Interface virtualisation — a component can’t tell if the other side is

another component or the host
e Shared nothing architecture, with resources

13

WebAssembly Components

0oooo

WebAssembly Components

Platform evolution .

onents
Libs WebAssembly Host I Wasm (wasmcCloud)

K8s + Containers

Declarative

= Compatible with:

Hypervisor 0S K8s, Containers,
Browser, OS,

App, Edge, etc

Tightly Coupled

Any Edge,
Any Cloud,

Computer Even your own

Legend: QRLEGIL I EL |

16

The wasmCloud platform

@ wasmcloud

\ distrubuted
'/_-_\ _____ ~— T _\'{ compute mesh]

N s, . w— —

-l;ﬂ--- - |

cmm=? Neccecaccaoe

location and hardware agnostic workloads
cross-region and cross-cloud resilience

17

Build

Faster Development Cycles
Leverage reusable, polyglot, Wasm components on a reliable,
distributed platform.

Centrally Maintainable Apps
Reusable, version-controlled components empower platform
teams to maintain thousands of diverse apps centrally.

Integrate with Existing Stacks

wasmCloud has first-tier support for Kubernetes, AWS, Azure,
GCP, Jenkins, Github Actions, ArgoCD, Backstage, Chainguard,
Databases, Messaging, and more.

Compose

Development Without Lock-In

Define application dependencies at runtime via contract driven
interfaces leveraging different vendors across deployments, dev,
QA, or prod.

Truly Portable Apps

Run the same Wasm application across operating systems and
architectures—no new builds required. Linux, MacOS X, Windows,
ARM, x86, and more.

Custom Capabilities
Easily extend the secure wasmCloud host at runtime to support
custom dependencies, hardware, or business contracts.

Run

Scale-to-Zero with Zero Cold Starts
Sub-millisecond start times and vertical autoscaling means
workloads scale to the demand.

Reliable, Fault-Tolerant Apps
Horizontal scaling with automated fail-over gives apps capability-
level resiliency, reliability, and scalability.

Deploy Across Clouds
Close to your users, with local-first routing and at-most-once
delivery, wasmCloud delivers cross-region, cross-cloud, and

cross-edge capability-level resiliency to every deployment ot_sensor
jot_

m WebAssembly ¢

“WebAssembly (abbreviated Wasm) is a binary instruction format for a stack-based virtual machine.
Wasm is designed as a portable compilation target for programming languages, enabling deployment on
the web for client and server applications.”

Performance Safety Portability

Simple stack-based virtual Designed for running Portable across all
machine for executing untrusted code in the machine architectures and
code written in any browser, Wasm’s sandbox operating systems, Wasm
language at near native is essential for running binaries are small and can
speeds, with almost no enterprise applications that start up instantly.
overhead. are composed from open Components are a
source software. standard shape and

portable across platforms

and clouds.
21

O

Thank you

red-badger.com
hello@red-badger.com

https://red-badger.com/
mailto:hello@red-badger.com

